
1

What is the best way to develop systems?
Continuing the conversation about agile and

plan-driven methods

Stan Rifkin*
US Air Force Office of Scientific Research
875 North Randolph St., Arlington, Virginia

703 696 9586 stan.rifkin @ afosr.af.mil

*The views presented are those of the author and do not necessarily represent the views of the US Department of Defense nor its Components.
Version 0.6. Updated from a special presentation to the San Diego Software Process Improvement Network, June 2005

2

My biases

 “Old school.” Just plain old.
 Understand in a deep way the need to do

better. Am a Certified Scrum Master.
 Seeing growth in BOTH long/big waterfall

projects (Future Combat Systems) AND
shorter, innovative ones (web systems).

 Worked/studied at the Software Engineering
Institute, a bastion of tradition. But rebelled!

 Manager at heart.
 Empirical at heart. Though appreciate a good

theory!

3

If you can’t stay …

 Maybe this should be called “high ritual” vs.
“low ritual.”

 None of the practices are new, so it’s the
synergism, connections, observations that
are new. Also new (well, tangible): the
polemic between process & people.

 The emphasis on risk is new, so is value-
driving the selection of methods.

 One size does not fit all: there are projects
that are better suited towards the agile end
and others better suited towards the plan-
driven side.

 There are many kinds of projects where we do
not know the best (combination of) methods.

4

Main point:

 The most powerful explanations cover BOTH
success AND failure.

 One powerful framework is contingency: “OK,
one size does not cover all. So, how many
sizes are there?”

 Or,
“What is the best way to develop systems?”
“Well, that depends.”
“Really? Depends upon what?”

5

Acknowledgements

 Barry Boehm, Center for Systems & Software
Engineering, University of Southern California.

 Rich Turner, Stevens Institute & consultant to
Office of the Secretary of Defense.

 Laurie Williams, North Carolina State University,
researcher, particularly on pair programming.

 Ken Schwaber, co-creator of Scrum.
 XPSD – San Diego group actively interested in

agile methods.
 Mary Shaw, Carnegie Mellon, for the use of

“ritual” to characterize methods. Also,
“incantation”!

6

Agile and Plan-Driven Home Grounds

 Plan-oriented developers; mix
of skills

 Mix of customer capability
levels

 Reliance on explicit
documented knowledge

 Requirements knowable
early; largely stable

 Architected for current and
foreseeable requirements

 Refactoring expensive
 Larger teams, products
 Premium on high-assurance

 Agile, knowledgeable, collocated,
collaborative developers

 Above plus representative,
empowered customers

 Reliance on tacit interpersonal
knowledge

 Largely emergent requirements,
rapid change

 Architected for current
requirements

 Refactoring inexpensive
 Smaller teams, products
 Premium on rapid value

Agile Home Ground Plan-Driven Home Ground

© CSE USC

7

The Planning Spectrum

Hackers XP
Adaptive
SW Devel.

Milestone
Risk- Driven

Models
……

Milestone
Plan-Driven

Models

Inch- Pebble
Ironbound
Contract

Software CMM

Agile Methods

CMMI

© CSE USC

8

9

Review

© CSE USC

10

Example RE Profile: Planning Detail
- Loss due to inadequate plans

Time and Effort Invested in plans

Risk Exposure
=

P(L) * S(L)

high P(L): inadequate plans
high S(L): major problems

(oversights, delays, rework)

low P(L): thorough plans
low S(L): minor problems

© CSE USC

11

Example RE Profile: Planning Detail
- Loss due to inadequate plans

- Loss due to market share erosion

Time and Effort Invested in Plans

RE =
P(L) * S(L)

low P(L): few plan delays
low S(L): early value capture

high P(L): plan
breakage, delay
high S(L): value
capture delays

high P(L): inadequate plans
high S(L): major problems

(oversights, delays, rework))

low P(L): thorough plans
low S(L): minor problems

© CSE USC

12

low P(L): thorough plans
low S(L): minor problems

Example RE Profile: Time to Ship
- Sum of Risk Exposures

Time and Effort Invested in Plans

low P(L): few plan delays
low S(L): early value capture

high P(L): plan
breakage, delay
high S(L): value
capture delays

Sweet Spot

high P(L): inadequate plans
high S(L): major problems

(oversights, delays, rework)

© CSE USC

13

Comparative RE Profile:
Plan-Driven Home Ground

Time and Effort Invested in Plans

Mainstream
Sweet

Spot

Higher S(L):
large system rework

Plan-Driven
Sweet Spot

© CSE USC

14

Comparative RE Profile:
Agile Home Ground

Time and Effort Invested in Plans

Mainstream Sweet
Spot

Lower S(L):
easy rework

Agile Sweet
Spot

© CSE USC

15 What’s best way to select methods
(redux)?

Source: MBASE Guidelines.
© CSE USC

16

Major points

Success in selecting the methods
depends upon careful characterization
of the risks, and therefore …

Success is entirely dependent on
selecting projects and methods that fit.

Clearly, one size does not fit all.

17

What is agile?
Manifesto for Agile Software Development

We are uncovering better ways of developing
software by doing it and helping others do it.

Through this work we have come to value:

 Individuals and interactions over processes and tools.
 Working software over comprehensive documentation.
 Customer collaboration over contract negotiation.
 Responding to change over following a plan.

That is, while there is value in the items on
the right, we value the items on the left more.

Source: http://www.agilemanifesto.org/

18

Agile principles 1-6
1. Our highest priority is to satisfy the customer through

early and continuous delivery of valuable software.
2. Welcome changing requirements, even late in

development. Agile processes harness change for the
customer's competitive advantage.

3. Deliver working software frequently, from a couple of
weeks to a couple of months, with a preference to the
shorter timescale.

4. Business people and developers must work together
daily throughout the project.

5. Build projects around motivated individuals. Give them
the environment and support they need, and trust them
to get the job done.

6. The most efficient and effective method of conveying
information to and within a development team is face-
to-face conversation.

19

Agile principles 7-12

7. Working software is the primary measure of progress.
8. Agile processes promote sustainable development. The sponsors,

developers, and users should be able to maintain a constant pace
indefinitely.

9. Continuous attention to technical excellence and good design
enhances agility.

10. Simplicity--the art of maximizing the amount of work not done--is
essential.

11. The best architectures, requirements, and designs emerge from self-
organizing teams.

12. At regular intervals, the team reflects on how to become more
effective, then tunes and adjusts its behavior accordingly.

Source: http://www.agilemanifesto.org/

20

4 values (actually XP)

 Simplicity
 Communication
 Feedback
 Courage

21

Source: “Case Study Retrospective: Kent Beck's XP Versions 1 and 2,” by Laurie Williams,
presented at the USC CSE Annual Research Review, March 14, 2005.

22

Scrum

© Advanced Development Methods

23

What’s different about Scrum

 “Potentially implementable or shippable
without any significant additional work (friendly
first use)”

 No project managers: the team is self-directing.
 Chickens and pigs. Only pigs can commit.
 Does not perform traditional project

management. No history to speak of.
 Uses a “do a little, then adjust” method.
 Can implement one project at a time.
 These days its advocates say it’s a method by

which an organization is transformed.

24

Agile methods

 Programming paradigms
eXtreme programming
Feature driven development
Crystal
DSDM
…

 Project management paradigms
Scrum

 The programming methods are independent
of the project management methods => “plug
and play.”

25

Some concerns about agile

 Remember, it’s not a specific method; there
are many methods to choose among.

 The list of concerns ebbs & flows with
experience and competing ideas.

26

What about hybrids?

 One finds them in practice.
What about Rational Unified Process &

Team Software Process?
 What makes XP, Scrum, and others work?

Easily implemented because of bite-size
pieces.

Takes good practices and (appropriately)
exaggerates them.

Answers the call of frustrated developers
and their clients. Something new.

27

OODA (context-adaptive) loop

Observe Orient

DecideAct

objectives, constraints,
alternatives; usage,

competition, technology,
marketplace

with respect to stakeholders
priorities, feasibility, risks;

perform business case/mission
analysis; create prototypes,

models, simulations

on next-cycle capabilities,
architecture upgrades, plans;

stabilize specifications, COTS
upgrades; document

development, integration, V&V
risks; reassess feasibility

(go/no go)

on plans, specifications; keep
development stabilized; prepare

for next cycle

© CSE USC

28 A decision flow for constructing a
hybrid

Step 5.
Execute and Monitor

Step 4.
Tailor Life Cycle

Step 3.
Architecture
Analysis

Step 1.
Risk Analysis

Step 2.
Risk
Comparison

Rate the project’s
environmental, agility-

oriented and plan-driven
risks.

Uncertain
about

ratings?

Buy information via
prototyping, data

collection and analysis

Compare
the agile
and Plan-

driven risks

Go Risk-based
Agile

Agility risks
dominate

Plan-driven risks
dominate

Architect application to
encapsulate agile parts

Go Risk-based
Agile in agile

parts; Go Risk-
based Plan-

driven elsewhere

Yes

No

Go Risk-based
Plan-driven

Tailor life cycle process
around risk patterns

and anchor point
commitment milestones

Monitor progress and
risks/opportunities,

readjust balance and
process as appropriate

Neither dominate

Deliver incremental
capabilities according to

strategy
Note: Feedback
loops present,
but omitted for

simplicity

Step 5.
Execute and Monitor

Step 4.
Tailor Life Cycle

Step 3.
Architecture
Analysis

Step 1.
Risk Analysis

Step 2.
Risk
Comparison

Rate the project’s
environmental, agility-

oriented and plan-driven
risks.

Uncertain
about

ratings?

Buy information via
prototyping, data

collection and analysis

Compare
the agile
and Plan-

driven risks

Go Risk-based
Agile

Agility risks
dominate

Plan-driven risks
dominate

Architect application to
encapsulate agile parts

Go Risk-based
Agile in agile

parts; Go Risk-
based Plan-

driven elsewhere

Yes

No

Go Risk-based
Plan-driven

Tailor life cycle process
around risk patterns

and anchor point
commitment milestones

Monitor progress and
risks/opportunities,

readjust balance and
process as appropriate

Neither dominate

Deliver incremental
capabilities according to

strategy
Note: Feedback
loops present,
but omitted for

simplicity

© CSE USC

29

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60

Percent of Time Added for Architecture and
Risk Resolution

P
er

ce
n

t
o

f
T

im
e

A
d

d
ed

 t
o

 O
ve

ra
ll

S
ch

ed
u

le

Percent of Project Schedule Devoted to
Initial Architecture and Risk Resolution

Added Schedule Devoted to Rework
(COCOMO II RESL factor)

Total % Added Schedule

10000
KSLOC

100 KSLOC

10 KSLOC

Sweet Spot

Sweet Spot Drivers:

Rapid Change: leftward

High Assurance: rightward

How Much Architecting is Enough?
Large projects need more

© CSSE USC

30

Concerns about plan-driven

 Strict (e.g., legalistic) adherence to a model.
 Project management self-fulfilling prophesies.
 Corporate and government acquisition styles.
 Ill-suited to poorly-specified/-understood

and/or changing requirements.

Source: Context-adaptive agility:
Managing complexity and
uncertainty. Todd Little. IEEE
Software, 22(3), 28-35 (2005).

31 Better (best?) life cycle:
Incremental commitment model

© CSSE USC

32 Different risk patterns require
different life cycle steps

© CSSE USC

33 Common Risk-Driven Special Cases of the
Incremental Commitment Model

Special Case Example Size,
Complexity

Change
Rate %
/Month

Criticality NDI Support Org, Personnel
Capability

Key Stage I Activities : Incremental
Definition

Key Stage II Activities: Incremental
Development, Operations

Time per Build;
per Increment

1. Use NDI Small Accounting Complete Acquire NDI Use NDI

2. Agile E-services Low 1 – 30 Low-Med Good;
in place

Agile-ready
Med-high

Skip Valuation , Architecting phases Scrum plus agile methods of choice <= 1 day;
2-6 weeks

3. Scrum of
Scrums

Business data
processing

Med 1 – 10 Med-High Good;
most in place

Agile-ready
Med-high

Combine Valuation, Architecting
phases. Complete NDI preparation

Architecture-based Scrum of
Scrums

2-4 weeks;
2-6 months

4. SW embedded
HW component

Multisensor
control device

Low 0.3 – 1 Med-Very
High

Good;
In place

Experienced;
med-high

Concurrent HW/SW engineering.
CDR-level ICM DCR

IOC Development, LRIP, FRP.
Concurrent Version N+1
engineering

SW: 1-5 days;
Market-driven

5. Indivisible IOC Complete vehicle
platform

Med – High 0.3 – 1 High-Very
High

Some in place Experienced;
med-high

Determine minimum-IOC likely,
conservative cost. Add deferrable
SW features as risk reserve

Drop deferrable features to meet
conservative cost. Strong award fee
for features not dropped

SW: 2-6 weeks;
Platform: 6-18
months

6. NDI- Intensive Supply Chain
Management

Med – High 0.3 – 3 Med- Very
High

NDI-driven
architecture

NDI-experienced;
Med-high

Thorough NDI-suite life cycle cost-
benefit analysis, selection,
concurrent requirements/
architecture definition

Pro-active NDI evolution influencing,
NDI upgrade synchronization

SW: 1-4 weeks;
System: 6-18
months

7. Hybrid agile /
plan-driven
system

C4ISR Med – Very
High

Mixed
parts:
1 – 10

Mixed
parts; Med-
Very High

Mixed parts Mixed parts Full ICM; encapsulated agile in high
change, low-medium criticality parts
(Often HMI, external interfaces)

Full ICM ,three-team incremental
development, concurrent V&V, next-
increment rebaselining

1-2 months;
9-18 months

8. Multi-owner
system of
systems

Net-centric
military
operations

Very High Mixed
parts:
1 – 10

Very High Many NDIs;
some in place

Related
experience, med-
high

Full ICM; extensive multi-owner team
building, negotiation

Full ICM; large ongoing
system/software engineering effort

2-4 months; 18-
24 months

9. Family of
systems

Medical Device
Product Line

Med – Very
High

1 – 3 Med – Very
High

Some in place Related
experience, med
– high

Full ICM; Full stakeholder
participation in product line scoping.
Strong business case

Full ICM. Extra resources for first
system, version control, multi-
stakeholder support

1-2 months; 9-
18 months

C4ISR: Command, Control, Computing, Communications, Intelligence, Surveillance, Reconnaissance. CDR: Critical Design Review.
DCR: Development Commitment Review. FRP: Full-Rate Production. HMI: Human-Machine Interface. HW: Hard ware.
IOC: Initial Operational Capability. LRIP: Low-Rate Initial Production. NDI: Non-Development Item. SW: Software

© CSSE USC

34 What is the best way to develop
systems?

 It depends!

35

More slides

36

Watts Humphrey on XP & TSP
 Advantages

1. Emphasis on customer involvement: A major help to projects where it can be
applied.

2. Emphasis on teamwork and communication: As with the TSP, this is very
important in improving the performance of just about every software team.

3. Programmer estimates before committing to a schedule: This helps to establish
rational plans and schedules and to get the programmers personally committed to
their schedules-a major advantage of XP and TSP.

4. Emphasis on responsibility for quality: Unless programmers strive to produce
quality products, they probably won't.

5. Continuous measurement: Since software development is a people-intensive
process, the principal measures concern people. It is therefore important to
involve the programmers in measuring their own work.

6. Incremental development: Consistent with most modern development methods.
7. Simple design: Though obvious, worth stressing at every opportunity.
8. Frequent redesign, or refactoring: A good idea but could be troublesome with any

but the smallest projects.
9. Having engineers manage functional content: Should help control function creep.

10. Frequent, extensive testing: Cannot be overemphasized.
11. Continuous reviews: A very important practice that can greatly improve any

programming team's performance (few programmers do reviews at all, let alone
continuous reviews).

Source: http://www.computer.org/software/dynabook/HumphreyCom.htm

37

Humphrey on XP & TSP (cont.)
 Disadvantages

1. Code-centered rather than design-centered development: Although the lack of XP design practices might not be serious for
small programs, it can be disastrous when programs are larger than a few thousand lines of code or when the work involves
more than a few people.

2. Lack of design documentation: Limits XP to small programs and makes it difficult to take advantage of reuse opportunities.
3. Producing readable code (XP's way to document a design) has been a largely unmet objective for the last 40-plus years.

Furthermore, using source code to document large systems is impractical because the listings often contain thousands of
pages.

4. Lack of a structured review process: When engineers review their programs on the screen, they find about 10-25% of the
defects. Even with pair programming, unstructured online reviews would still yield only 20-40%. With PSP's and TSP's
structured review process, most engineers achieve personal review yields of 60-80%, resulting in high-quality programs and
sharply reducing test time.

5. Quality through testing: A development process that relies heavily on testing is unlikely to produce quality products. The
lack of an orderly design process and the use of unstructured reviews mean that extensive and time-consuming testing
would still be needed, at least for any but the smallest programs.

6. Lack of a quality plan: We have found with the TSP that quality planning helps properly trained teams produce high-quality
products, and it reduces test time by as much as 90%. XP does not explicitly plan, measure, or manage program quality.

7. Data gathering and use: We have found with the TSP that, unless the data are precisely defined, consistently gathered, and
regularly checked, they will not be accurate or useful. The XP method provides essentially no data-gathering guidance.

8. Limited to a narrow segment of software work: Since many projects start as small efforts and then grow far beyond their
original scope, XP's applicability to small teams and only certain kinds of management and customer environments could be
a serious problem.

9. Methods are only briefly described: While some programmers are willing to work out process details for themselves, most
engineers will not. Thus, when engineering methods are only generally described, practitioners will usually adopt the parts
they like and ignore the rest. Kent Beck notes that, when the XP method fails in practice, this is usually the cause.

10. Obtaining management support: The biggest single problem in introducing any new software method is obtaining
management support. The XP calls for a family of new management methods but does not provide the management training
and guidance needed for these methods to be accepted and effectively practiced.

11. Lack of transition support: Transitioning any new process or method into general use is a large and challenging task.
Successful transition of any technology requires considerable resources, a long-term support program, and a measurement
and analysis effort to gather and report results. I am not aware of such support for the XP.

	What is the best way to develop systems?�Continuing the conversation about agile and plan-driven methods
	My biases
	If you can’t stay …
	Main point:
	Acknowledgements
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Review
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	What’s best way to select methods (redux)?
	Major points
	What is agile?
	Agile principles 1-6
	Agile principles 7-12
	4 values (actually XP)
	Slide Number 21
	Scrum
	What’s different about Scrum
	Agile methods
	Some concerns about agile
	What about hybrids?
	OODA (context-adaptive) loop
	A decision flow for constructing a hybrid
	How Much Architecting is Enough?�	Large projects need more
	Concerns about plan-driven
	Better (best?) life cycle: Incremental commitment model
	Different risk patterns require different life cycle steps
	Common Risk-Driven Special Cases of the Incremental Commitment Model
	What is the best way to develop systems?
	More slides
	Watts Humphrey on XP & TSP
	Humphrey on XP & TSP (cont.)

